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Self-organization of growing and decaying particles

V. G. Karpov and David W. Oxtoby
James Franck Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637

~Received 6 December 1996!

Because of thermocapillary flow or other mechanisms, particles move in temperature and concentration
gradients. In a system undergoing a first-order phase transition via nucleation and growth, such gradients are
caused by particles themselves. This leads to a long-range interaction in which particles will attract or repel,
depending on their growth rates. For the case of attraction, particles organize into clusters, while repelling
particles form more uniform particle distributions where fluctuations are leveled out. The implications of this
effect for materials processing are discussed.@S1063-651X~97!06906-7#

PACS number~s!: 61.43.Fs, 61.43.Dq, 64.70.Kb
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I. INTRODUCTION

When a phase transition occurs by nucleation and grow
it is typically assumed that growing second-phase partic
are uncorrelated in their spatial positions. This picture diff
from that of spinodal decomposition@1#, which leads to a
rapid formation of second-phase clusters. It is shown be
that, contrary to the standard assumption, correlations
occur in a system of nucleated particles, leading either
formation of many-particle clusters or to a more unifor
spatial distribution of particles.

Two statements underlie our argument:~i! each particle
causes a temperature and/or solute concentration field w
absolute value decreases as 1/r with the distancer from the
particle, and whose sign depends on whether the par
grows or decays, and~ii ! particle motion is affected by thes
field gradients.

Before discussing the above statements let us point
how they lead to long-range correlations of particle po
tions. Suppose, first, a particle moves up the field grad
and the particle’s field is positive~say, a growing crystallite
in a liquid moves up in the temperature gradient and cau
a positive temperature field about itself!. As a result, the
particle increases the field in a region where it is alrea
relatively high. This positive feedback and corresponding
stability also takes place when the particle moves dow
gradient, provided its field is negative. Such an instabi
will result in particle clustering. If, on the other hand, a pa
ticle moves up~down! the gradient and its field is negativ
~positive!, then the feedback will be negative and nonunifo
mities will level out in a system undergoing a phase tran
tion.

Another way to arrive at the same conclusions is to n
that since a particle moves in the gradient of the field cau
by its neighbor, there is an effective interaction between
two, either attractive or repulsive, depending on the pa
cle’s field sign and the direction it moves in the gradient.
the case of an attractive interaction the particles will fo
clusters, while they will array uniformly in the case of repu
sion.

Because of the long-range, 1/r , character of a particle
field, many particles will be involved in such interaction
Furthermore, supposing the interaction is linear in the gra
ent ~at small gradients!, the effective force between two pa
551063-651X/97/55~6!/7253~7!/$10.00
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ticles will be proportional to 1/r 2, much as in electrostatics
This brings in many features typical of electrostatics, inclu
ing the concepts of instabilities and many-particle effects
particular, one can anticipate screening of particle fiel
analogous to Debye screening, and its possible breakd
when the fields are strong enough.

The conclusion of particle clustering has much in co
mon with that of the theory of spinodal decomposition@1#.
Note in this connection that in both cases there are attrac
forces that provoke clustering. The difference is that for
case of spinodal decomposition there is an attraction betw
the molecules forming a new phase, while for the case un
consideration here the attractive force acts not between i
vidual molecules but between the nuclei of the new pha
Another important difference is that the attraction is assum
to be of a short-range~atomic! nature for the case of spinoda
decomposition, as opposed to the long-range, Coulomb-
attraction for the case under consideration.

Our paper is organized as follows. In Sec. II we consid
the fields of individual particles and their screening. In S
III possible mechanisms of particle motion in temperatu
and concentration gradients are discussed. Section IV in
duces a qualitative approach to understanding particle s
organization, while a more quantitative approach based
linear stability analysis is developed in Sec. V. Discussion
the results and some concluding remarks are given in S
VI.

II. PARTICLE FIELDS

We turn now to a discussion of statement~i! above, that a
nonequilibrium particle causes a 1/r change in temperature
T ~concentrationc). Its explicit form can be obtained by
solving the thermal conductivity~diffusion! equation in the
quasistationary approximation@2#. For the case of tempera
ture one finds

T2T`5~Ta2T`!
a

r
, ~1!

wherea is the particle radius,T` is the temperature far from
7253 © 1997 The American Physical Society
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7254 55V. G. KARPOV AND DAVID W. OXTOBY
the particle, andTa is the temperature at the particle inte
face. For the case of concentration,dc can be obtained from
Eq. ~1! by replacing

T→c, T`→c`, and Ta→ca . ~2!

Two related questions will be discussed in connection w
Eq. ~1!. First, the problem under consideration implies
external~with respect to the particle! temperature gradien
which will modify Eq. ~1!. Second, in dealing with man
particles one should note that the growth rate of any one
them is affected by the fields of its neighbors. Because
field generated by that particle is due to its growth, this fi
will be affected by the neighbors as well.

To account for an external gradient we follow the sta
dard approach@3# based on the quasistationary thermal co
ductivity ~diffusion! equation¹2T50 for the case of axia
symmetry, with the gradientA fixed far from the particle.
We write the solutionsT, andT. inside (r,a) and outside
(r.a) the particle subject to the boundary conditions

T,5T. , k,

]T,

]r
2k.

]T.

]r
5hs at r5a, ~3!

wherek, andk. are the thermal conductivities of the tw
phases andhs is the heat liberated~absorbed! per second per
unit area of the interface due to the phase transformation.
simplicity we adopt in what followsk,5k.5k. Also we
note thaths is related to the growth rate by

hs5qr
da

dt
, ~4!

where q is the latent heat, andr is the material density
Because of the axial symmetry we set

T,5Ta1T1A•r /~Aa!,

T.2T`5A•r S 11B
a3

r 3 D1~Ta2T`!
a

r
, ~5!

where r is the radius vector andTa, T1, and B are three
parameters to be determined from the boundary condition
Eq. ~3!. Although the above equations are sufficient to det
mine the temperature field at all points, it is desirable
obtain the results in a form that accounts for the differen
between bulk-diffusion-limited and interface-limited grow
kinetics. This is achieved by introducing the linear kine
coefficient@4–6# K, determining the particle growth rate,

da

dt
5K~Ta02Ta!. ~6!

Equation ~6! expresses the fact that the particle rad
changes because its interface temperatureTa differs from the
equilibrium temperatureTa0. In accordance with Eq.~5! the
interface temperature is

Ta5Ta1T1A•r /~Aa! for ur u5a. ~7!

Substituting Eqs.~7!, ~6!, ~5!, and~4! into Eq. ~3! gives
h
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Ta2T`5
~Ta02T`!Q

11Q
,

T15
3aA

31Q
, B52

Q

31Q
, ~8!

where we have introduced the dimensionless parameter

Q[K
aqr

k
. ~9!

The parameterQ determines the efficiency of an extern
gradient. In particular, it follows from Eq.~8! that the tem-
perature drop 2T1 across the particle poles decreases by
factor

e15
3

31Q
, ~10!

while the average temperature at the interface decrease
the factor

e05
Q

11Q
~11!

as compared to the case of a stable particle. The limiting c
Q!1 corresponds to interface-limited kinetics where ve
slow exchange between the two phases makes it possib
establish a considerable temperature gradient across the
ticle (e1'1), while the average temperature drop at the
terface is relatively small (e0!1). The opposite caseQ@1
refers to bulk-diffusion-limited kinetics in which the ex
change between the phases is very fast. In that case
temperature difference across the particle poles would af
the local growth rates at the poles and thus level out
difference. This negative feedback makes the tempera
gradient in the particle lower by the factore1!1 than that of
a stable particle. On the other hand, the average tempera
drop across the interface is close to its maximum va
e0'1.

Following the recipe in Eq.~2! one can modify the results
in Eqs. ~8! to describe the case of a concentration gradie
The parameterQ will then change to

Q5
Ka

Dc
, ~12!

with Dc being the solute diffusion coefficient.
We now turn to the issue of screening in a system

many growing or decaying particles. For the sake of defin
ness we again concentrate on the case of a temperature
Screening can be then understood as resulting from the
that the temperature near a growing particle is increased
the temperature fields of remote growing particles, so
growth will slow down and thus the temperature field caus
by that particle will be decreased. The corresponding scre
ing length can be derived from the quasistationary therm
conductivity equation

x¹2T2nI50, ~13!
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55 7255SELF-ORGANIZATION OF GROWING AND DECAYING . . .
wherex is the thermal diffusivity,n is the concentration o
particles, andI is the temperature flux per center. Based
Eqs.~5! and ~8!, we write

I52k~]T/]r !4pr 254pxa
Q

11Q
~Ta02T`!. ~14!

To derive the screening length we consider smooth lo
range fluctuations of temperature and particle concentrat
In accordance with its physical meaning,T` , the tempera-
ture far from a particle, will be different in different fluctua
tions. Hence we identify the temperatureT` with a local
temperatureT averaged over a region~fluctuation! contain-
ing many particles and varying smoothly between such
gions. To describe the fluctuations explicitly we set

dn5n2 n̄ and dT5T2 T̄,

where T̄ and n̄ are, respectively, the average temperat
and particle concentration in the system. In the linear
proximation we find

x¹2dT24p n̄xa
Q

11Q
dT5dn Ī , ~15!

where the average flux

Ī 54pxa
Q

11Q
~Ta02 T̄ !

is positive or negative for the cases of growing or decay
particles, respectively. From its solution

dT52
Ī

4pxE dn~r 8!
exp$2ur2r 8u/r s%

ur2r 8u
d3r 8 ~16!

we see that the temperature field screening length is

r s5A 11Q

4pQ n̄a
. ~17!

Along the same lines one can consider screening of con
tration fields. The result is again given by Eq.~17! with Q
from Eq. ~12!. Note also that the above screening has mu
in common with the standard Debye screening in electros
ics and the formulas for screening lengths look alike. T
reflects the analogy between the quasistationary diffus
and electrostatic problems, both reduced to the Laplace e
tion.

III. PARTICLE MOBILITY

The second of the two basic statements in Sec. I, th
particle moves in a nonuniform environment, makes se
simply because the opposite seems to be unnatural. Phe
enologically, the particle velocity

V5j fDa“ f ~18!

is proportional to the field gradient“ f and the particle dif-
fusion coefficientDa , with the proportionality coefficient
j f determined by the particular mechanism of interaction
n
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number of different mechanisms can be suggested. Som
them are described below in this section.

For the case of a temperature gradient such a mecha
may be thermocapillary migration@7#, known since the pio-
neering work of Younget al. @8#. Its nature is as follows. A
local increase in temperature results in a local decreas
surface free energys that is accompanied by a nonuniform
tangential stress at the surface. In response to this stre
flow occurs from the warmer to the cooler pole of the p
ticle. Therefore the particle will move in the direction of i
warmer pole. For the case of small Reynolds number
thermocapillary migration velocity is

V5
2sTa

n~213a!~21b!
“T[DajT“T, ~19!

wheresT5]s/]T, a is the ratio of viscosity of the particle
phase to that of the continuum phase,b is a similar ratio of
thermal conductivities, andn is the dynamic viscosity. Tak-
ing into account the Stokes-Einstein relationsh
Da5T/(6pna) and using the order-of-magnitude estima
usTu;s/T, one finds

jT;sa2/T2@T21. ~20!

It is natural to consider a similar effect due to the concen
tion gradient“c rather than“T above. Reasoning along th
same lines, we consider a particle in a concentration grad
and assume the surface tension to decrease as the solute
centration increases. Since a local increase in solute con
tration is accompanied by a local decrease in surface ene
a nonuniform tangential stress will appear that entails a fl
to the low-concentration pole of the particle. Hence the p
ticle will move up the concentration gradient. For the ca
when viscosities of the two phases are comparable,a;1, its
velocity has an order-of-magnitude estimate

V5Dajc“c;
sca

n
“c, sc5

]s

]c
. ~21!

The above assumption thatsc is positive does not hold true
in general. This derivative is related to the surface exces

G[2S ]s

]m D
T

52scS ]c

]m D
T

,

that can be either positive or negative, depending on so
chemistry@9#, wherem is the chemical potential. An estimat
to serve as a rough guide ofujcu for this mechanism can be
obtained from the Gibbs equation

ds

dc
52

GR0T

c
,

where R0 is the gas constant. We note that typica
uGu;(1–10)310210 mol/cm2, so that the productuGuR0T is
of the order of a typical surface energys which varies from
10 to 100 dyn/cm between different systems. Therefore
can roughly estimateuscu;s/c, in qualitative agreemen
with the data@9–11#. Using the latter estimate together wit
the Stokes-Einstein relationship gives
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7256 55V. G. KARPOV AND DAVID W. OXTOBY
jc;
sa2

cT
@1. ~22!

Note that if barodiffusion is taken into account it can dr
matically increase the concentration-capillary effect and t
the parameterjc @12#.

The above consideration of capillary migration impli
the particles to be stable. If on the other hand the partic
grow or shrink~as we plan in what follows! the efficiency of
capillary migration will decrease, because this affects
local growth rates at the poles and thus levels out the dif
ence. As was discussed in Sec. II, the gradient of the o
parameter~temperature or concentration! decreases by the
factor e153/(31Q) as compared to the case of stable p
ticles,Q50 @see Eq.~10!#. Since this factor also appears
the equations for the capillary migration velocity, we co
clude that the case of bulk-diffusion-limited kinetic
(Q@1) is unfavorable for capillary migration. On the oth
hand, capillary flow survives slow interface kinetic
(Q!1).

It is worth noting here that, while being favorable fo
capillary flow, smallQ!1 leads to correspondingly wea
fields caused by individual particles, as is seen from Eq.~11!.
In other words, atQ!1 particles act as ineffective source
and effective receivers of the field. Interparticle interactio
depend on both these competing factors, which balance
other. This can be qualitatively understood from the fact t
in the region of linear dimensionr s @with r s from Eq. ~17!#
the characteristic field is proportional to the number of p
ticles nrs

3 , their effective chargese0, and inversely propor-
tional to r s . Sincee0r s

2 does not depend onQ, the charac-
teristic fluctuation field affecting an individual particl
remains finite atQ!1. This reasoning implies, however, th
the fluctuation has time to evolve over the distancer s ; the
latter time becomes infinitely long asQ→0 ~see Secs. IV
and V below!. Meanwhile, our consideration is not restricte
to the case of smallQ!1.

In a recent paper@13# another mechanism of thermom
gration in a multiphase system subjected to an imposed t
perature gradient was suggested. This is associated
asymmetric thermodynamic properties of the underlying
existing phases. Due to the phase asymmetry, therm
namic forces occur at the surface of the droplet, since
phase tends to be on the colder side and the other phas
the hotter side. Such forces will not be present in the sy
metric phase situation. Droplets of different phases migr
in opposite directions because this leads to a decrease i
free energy of the system. As opposed to thermocapil
migration, the latter is due to the bulk~not interface! charac-
teristics of the phases. Although no analytical results on
migration velocity have been presented, the computer m
eling in Ref. @13# shows that the velocity is linear in tem
perature gradient and may win out over that of the stand
thermocapillary model and have a different sign. Based
that, we conclude that the phenomenological equation~18! is
applicable to the situation where the latter mechanism do
nates and that the parameterjT above may have the opposi
sign and larger absolute value than in the case of thermo
illarity.

Similar concepts of thermodynamic force related to a
crease in free energy due to particle motion were put forw
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in Ref. @14# for the case of growing and decaying particles
a nonuniform solute. The result, that the force on a particl
proportional to its growth rate and local solute concentrat
gradient, agrees with the phenomenological description
Eq. ~18!. Based on the estimate in Ref.@14# we get

jc;
a3

a0
3

c2ca
c

@1,

where a0 is the characteristic molecular dimension. How
ever, since the approach in Ref.@14# is restricted to a purely
diffusive model and does not account for possible hydro
namic effects, the absolute value and even sign of the t
modynamic force may be different.

We mention also one more specific mechanism of mo
ity suggested for a living cell in a concentration gradient@15#
and based on hydrodynamic effects caused by ionic curr
flowing through the cell.

We end this section by presenting some general hydro
namic arguments showing the existence of a force on a gr
ing or decaying particle in a nonuniform environment. T
eliminate all the effects that are not due to the gradient
growth we assume that for a hypothetical case of a sta
particle all the forces are balanced and there are no curr
in the system. Because of particle growth currents will a
pear both normal and tangential to its surface. Correspo
ingly, the force on the particle will consist of two contribu
tions. The first one, normal to the interface, is due to dir
momentum transfer associated with particle growth. The s
ond, tangential contribution results from the viscous fricti
on the particle surface exerted by the fluid flow. For defini
ness we consider the case of a temperaure gradient.

The first contribution,Fn , can be understood by using
local reference frame pinned at some point of the grow
particle surface. Since the surface is at rest at this frame,
force per unit area on it is the momentum transferred per
area per second. The latter is associated with the motio
surrounding fluid feeding the particle. The corresponding
locity near the interface isda/dt in the reference frame cho
sen. The force on a hemisphere is thenFn;dr(da/dt)2a2,
wheredr is the difference between the material densities
the two phases. Because of the gradient, the temperature
ference across the particle changes bydTc;a¹T. Hence the
forces on the opposite hemispheres do not completely
ance each other. With Eq.~6! taken into account the net forc
on the particle will be

Fn;dr
da

dt
a3K¹T.

The second contribution,Ft , can be estimated by notin
that the surrounding fluid velocityda/dt changes across th
particle bydv;Ka¹T and thata is the only space scale in
the problem. From that we find

Ft;hKa2¹T.

If we express the linear kinetic coefficientK through the
parameterQ @see Eqs.~9! and~12! above# and note that both
the cases of interface-limited (Q!1) and bulk-diffusion-
limited (Q@1) growth are realistic, we see that, dependi
on the parameters of the system~say, the sign ofdr), both
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55 7257SELF-ORGANIZATION OF GROWING AND DECAYING . . .
the cases of particle migration up and down the gradient
possible. The corresponding dimensionless parameterTjT in
Eq. ~18! can be either larger or smaller than unity in absol
value.

It follows from the above analysis that many differe
mechanisms can contribute to an unstable particle migra
in a nonuniform medium. Which of them dominates depen
on the parameters of the system. Both cases of downhill
uphill migration are possible, and the dimensionless par
eter f j f determining the absolute value of the particle velo
ity can be much larger than unity.

IV. PARTICLE SELF-ORGANIZATION

In this section we discuss particle self-organization o
qualitative level. We begin here with pairwise interpartic
interactions that are assumed to cut off at the screen
length. For the case of two identical particles, characteri
by the parametersa, Ta , andjT , based on Eqs.~1! and~19!
and taking into account the particle mobilityDn /T, one can
write a quasi-Coulomb interparticle force

F„r …52
r

r 3
ajTT~Ta2T`!. ~23!

For the case of the standard thermocapillary mechan
jT.0, two growing particles attract, while two decayin
particles repel. However, if other mechanisms domin
there may bejT,0, so that the situation reverses.

As described in Sec. I, for the case of attracting partic
we expect clustering to develop, such that each cluster c
tains many particles. We estimate the characteristic m
mum cluster dimensionr c by equating the diffusion curren

JD;Dn

dn

r c

out of the region and the inward drift current

JF;
Dn

T
F~r c!~dnrc

3! n̄

caused bydnrc
3 excess particles, each of them producing

force F(r c) given in Eq. ~23!. HereDn /T is the nucleus
mobility. From that we find

r c;A 1

4p n̄jTa~Ta2 T̄ !
, ~24!

where we have replaced the temperatureT` , smoothly vary-
ing in space, by the average temperatureT̄. We recall that, in
accordance with the considerations in Sec. II, the interf
temperature is determined by the type of growth kinetics
the parameterQ. With Eq. ~8! taken into account we expres

r c;A 11Q

4pQ n̄jTa~Ta02 T̄ !
. ~25!

Note that above we have neglected the effects of scree
that oppose clustering. The screening lengthr s must be
re
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larger thanr c in order that clustering not be suppresse
Equatingr s from Eq. ~17! and r c from Eq. ~25! introduces
the critical undercooling

Ta02T5
1

jT
, ~26!

such that atTa02T.jT
21 the clustering wins out over the

screening, while in the opposite case the clustering is s
pressed. As long as the dimensionless productjTT@1 ~in
accordance with estimates in Sec. III! the critical undercool-
ing is relatively small,Ta02T!T. That screening canno
prevent clustering at large undercooling can be interprete
a breakdown of the electrostatic analogy mentioned abo
We shall see in Sec. V below that the crossover between
two regimes at the critical undercooling occurs as a criti
phenomenon.

One other point to note is that the critical undercooli
does not depend on the kinetic parameterQ for the case of
smallQ!1. Physically this means that a small thermocap
lary effect corresponding toQ!1 is compensated by a larg
number of particles involved in the region of linear dime
sion r s that increases asQ decreases, as discussed after E
~22! above. The parameterQ will, however, determine the
characteristic time scaler c

2/Dn over which particle self-
organization evolves. In the limiting case ofQ→0 this char-
acteristic time becomes infinitely long, making fluctuatio
unobservable. In the alternative limiting case of largeQ@1
the interaction parameterjT becomes small since it is pro
portional to the factore1 @Eq. ~10!# as discussed in Sec. III
This may cause the critical undercooling in Eq.~26! to in-
crease beyond the region where the phase transformation
curs by nucleation and growth. The alternative region
spinodal decomposition is not described by the pres
theory.

It follows from the above derivation that the drift curre
JF will increase as the radiusr of the fluctuation increases
Therefore fluctuations ofr.r c will increase spontaneousl
with characteristic times that are decreasing functions or .
This reasoning is, however, restricted to the assumption
established temperature fields (dT}1/r ) underlying the force
in Eq. ~23!. This implies that the heat must diffuse fa
enough. If we equate the characteristic timer 2/x to establish
thermal equilibrium in a region of linear dimensionr and the
characteristic timer /vn of particle drift with velocity

vn;JF / n̄ , then we get a new characteristic dimension

rmax;r cA x

Dn
. ~27!

Fluctuations ofr.rmax will not grow. From that we con-
clude that there exist fastest-growing modes of some lin
dimensionR such thatr c,R,rmax. In the approximation
neglecting the growth of all modes except those of the fas
ones, the fluctuations will exhibit a set of clusters of char
teristic dimensionR. We again observe the similarity of th
phenomena under consideration to spinodal decompositi
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V. LINEAR STABILITY ANALYSIS

To make the analysis of Sec. IV more quantitative
write the kinetic equations and employ linear stability ana
sis. We consider a system of a fixed number of particles, t
neglecting the possibility of their creation or annihilatio
and suppose for simplicity that they all have the same rad
a. For instance, such a system may serve as a model fo
growth stage of second-phase nucleation, at which new
clei are unlikely to appear while coarsening has not yet
gun. With Eq.~18! taken into account the kinetic equatio
for the particle concentration becomes

]dn

]t
5DnjTn̄¹2dT1Dn¹

2dn, ~28!

Eq. ~28! is linearized indn anddT. The temperature kinetic
beyond the quasistationary approximation can be descr
by adding the corresponding time derivative to Eq.~15!:

]dT

]t
5x¹2dT2dn Ī 24p n̄x

Q

11Q
adT. ~29!

Letting T̃(k,v) and ñ(k,v) be the Fourier transforms of th
temperaturedT(r ,t) and nucleus concentrationdn(r ,t), re-
spectively, corresponding to wave vectork and frequency
v, Eqs.~28! and ~29! give

~2 iv1Dnk
2! ñ1jTn̄Dnk

2T̃50,

Ī ñ1S 2 iv14p
Q

11Q
n̄xa1xk2D T̃50.

The condition that these equations be compatible has
form of a dispersion equation

v~k!5 i S 2
A

2
6AA2

4
1BD[ ig, ~30!

where

A5k0
2x1k2~Dn1x!, k05A4p

Q

11Q
n̄a,

B5Dnxk
2$k0

2@~Ta02 T̄ !jT21#2k2%.

Note that the characteristic wave vectork0 is exactly the
reciprocal of the screening radiusr s in Eq. ~17!. The fluctua-
tion is unstable provided that the frequencyv has a positive
imaginary part, that is,g.0. The latter is achieved for th
case of attracting particles,Ta. T̄, provided thatB.0. On
the other hand, for the case of repelling particles, the fl
tuations decay since the inequalityTa2 T̄,0 leads to
B,0 and the real part ofg is negative. These conclusion
agree with those derived above on qualitative grounds.

For the case of attracting particles the fluctuations that
unstable possess wave numbers

k,kc[k0A~Ta02 T̄ !jT21 ~31!
-
s

s
he
u-
-

ed

he

-

re

or ~what is the same! space scales larger thanr c5kc
21 . In the

linear approximation their amplitudes increase exponenti
with time,

dT~ t !, dn~ t !}exp~gt !.

It follows from Eq. ~30! that the amplification factorg(k)
reaches its maximum

gm5kc
2Dn at k5km'k0@AjT~Ta02T̄!21#. ~32!

Becauseg(k) has a maximum and it occurs in an expone
tial, it is convenient in the first approximation to ignore th
growth of all modes but those near the fastest-growing on
In this approximation we return to the prediction@after Eq.
~27! above# of a set of clusters characterized by linear dime
sionRm5km

21 that falls in the interval (r c ,rmax).
One other point is that, in accordance with Eq.~31!, clus-

tering will develop only if the critical undercooling given i
Eq. ~26! is exceeded, again in agreement with the qualitat
analysis in Sec. IV above. Equation~31! predicts crossover
between the regimes of screening and clustering to have
character of a critical phenomenon.

Generalization of the above results to the case of ot
mechanisms of particle mobility is straightforward. For t
case of the concentration-capillary effect it is achieved
replacingjT→jc , T̄→ c̄ , Ta→ca , x→Dc .

Note that the kinetic equations above neglect the ti
dependencea(t). This implies the functiona(t) to be slow
in the sense uda/dtu!agm . For the case of the
concentration-capillary effect this reduces to the inequa
na3ujcucDn /Dc@1 which seems to be realistic with the e
timate ujccu;sa2/T@1 taken into account. For the the
mocapillary effect in dense gases the corresponding ineq
ity na3ujTuTDn /x@1 may hold true as well, while it is
unlikely for the case of condensed matter because of
inequalityDn!x. We emphasize in this connection that th
restrictiona(t)5const and others imposed in the course
the above linear stability analysis have been chosen for
sake of simplicity only. From our qualitative reasoning, se
organization of particles will take place in any system und
going a first-order phase transition.

VI. DISCUSSION OF THE RESULTS

We now estimate the characteristic cluster dimensionr c
using typical material parameters corresponding to alloy
materials @16#. We take n;1018 cm23, a;10 Å,
jc(c2ca0);1 @close to the critical supersaturation dete
mining the crossover between the clustering and screen
cf. Eq.~26!#. Also, rather arbitrarily, we setQ;1024 ~values
of Q less than 0.01 are realistic@7,17#!. Then, from Eq.~25!
we obtainr c;3 mm with ;108 particles per cluster. Since
small Q corresponds to an interface barrier, it depends
temperature exponentially as doesr c .

It follows from the above estimate that second-phase c
centration can fluctuate considerably on a long-range~meso-
scopic! space scale. Although we do not see from the th
retical point of view how one can eliminate the fluctuatio
predicted, we have to admit that we are not aware of exp
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mental evidence in favor of such fluctuations. The only co
clusion we can draw to reconcile this fact with our pred
tions is that the issue of mesoscopic correlations has not b
adequately addressed in the experimental study of ph
transformation kinetics. Average numbers of second-ph
particles per volume depending on time, composition, a
annealing schedules are typically measured; much less a
tion is paid to the question of their possible space correlat
We hope that the present work will stimulate new expe
mental activity in studying first-order phase transformatio
on mesoscopic scale.

Although there is no direct experimental evidence for
clustering predicted, two supporting pieces of evidence
be pointed out. First, a vigorous thermocapillary flow in
droplet undergoing evaporation was observed recently@18#.
This shows that the phenomena of phase transformations
capillary flow are compatible, in agreement with the resu
of our analysis in Sec. II above. Second, Tanaka@19# ob-
served an attraction between growing droplets in a bin
fluid which he qualitatively attributed to a direct coupling
diffusion fields around droplets.
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Associated with the fluctuations in second-phase conc
tration will be fluctuations in material parameters, such
rigidity, elasticity, reflectivity, and so forth. Since such flu
tuations are important~and normally undesirable! from the
technological standpoint@20#, we also hope that the abov
findings may have implications for technology. As an e
ample we note that adding a very slight amount of so
impurity is known to suppress capillary flow by contamina
ing the particle interface and thus supporting tangential st
without steady-state flow. With that in mind, we suggest
possibility of improving multiphase material uniformity b
means of properly chosen doping. Another possibility is
use a thermal treatment~say, a short-time anneal! that, while
having no time to destroy second-phase particles, chan
their interactions from attractive to repulsive and thus lev
out the fluctuations.

In conclusion, we have shown that in a system undergo
a first-order phase transition, self-organization of nuclea
particles can take place, leading either to formation of cl
ters or to a space-uniform distribution, depending on
thermal treatment schedule and material chemistry.
r.
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